HPS6 interacts with dynactin p150Glued to mediate retrograde trafficking and maturation of lysosomes.
نویسندگان
چکیده
Hermansky-Pudlak syndrome 6 protein (HPS6) has originally been identified as a subunit of the BLOC-2 protein complex that is involved in the biogenesis of lysosome-related organelles. Here, we demonstrate that HPS6 directly interacts with the dynactin p150(Glued) subunit of the dynein-dynactin motor complex and acts as cargo adaptor for the retrograde motor to mediate the transport of lysosomes from the cell periphery to the perinuclear region. Small interfering RNA (siRNA)-mediated knockdown of HPS6 in HeLa cells not only partially blocks centripetal movement of lysosomes but also causes delay in lysosome-mediated protein degradation. Moreover, lysosomal acidification and degradative capacity, as well as fusion between late endosomes and/or multivesicular bodies and lysosomes are also impaired when HPS6 is depleted, suggesting that perinuclear positioning mediated by the dynein-dynactin motor complex is required for lysosome maturation and activity. Our results have uncovered a so-far-unknown specific role for HPS6 in the spatial distribution of the lysosomal compartment.
منابع مشابه
HPS6 interacts with dynactin p150 to mediate retrograde trafficking and maturation of lysosomes
Hermansky-Pudlak syndrome 6 protein (HPS6) has originally been identified as a subunit of the BLOC-2 protein complex that is involved in the biogenesis of lysosome-related organelles. Here, we demonstrate that HPS6 directly interacts with the dynactin p150 subunit of the dynein–dynactin motor complex and acts as cargo adaptor for the retrograde motor to mediate the transport of lysosomes from t...
متن کاملRetrograde transport of TrkB-containing autophagosomes via the adaptor AP-2 mediates neuronal complexity and prevents neurodegeneration
Autophagosomes primarily mediate turnover of cytoplasmic proteins or organelles to provide nutrients and eliminate damaged proteins. In neurons, autophagosomes form in distal axons and are trafficked retrogradely to fuse with lysosomes in the soma. Although defective neuronal autophagy is associated with neurodegeneration, the function of neuronal autophagosomes remains incompletely understood....
متن کاملDynein and dynactin components modulate neurodegeneration induced by excitotoxicity.
Glutamate excitotoxicity causes neuronal dysfunction and degeneration. It is implicated in chronic disorders, including Alzheimer's disease, and in acute CNS insults such as ischemia. These disorders share prominent morphological features, including axon degeneration and cell body death. However, the molecular mechanism underlying excitotoxicity-induced neurodegeneration remains poorly understo...
متن کاملBPAG1n4 is essential for retrograde axonal transport in sensory neurons
Disruption of the BPAG1 (bullous pemphigoid antigen 1) gene results in progressive deterioration in motor function and devastating sensory neurodegeneration in the null mice. We have previously demonstrated that BPAG1n1 and BPAG1n3 play important roles in organizing cytoskeletal networks in vivo. Here, we characterize functions of a novel BPAG1 neuronal isoform, BPAG1n4. Results obtained from y...
متن کاملCytoplasmic dynein binds dynactin through a direct interaction between the intermediate chains and p150Glued
Cytoplasmic dynein is a retrograde microtubule motor thought to participate in organelle transport and some aspects of minus end-directed chromosome movement. The mechanism of binding to organelles and kinetochores is unknown. Based on homology with the Chlamydomonas flagellar outer arm dynein intermediate chains (ICs), we proposed a role for the cytoplasmic dynein ICs in linking the motor prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 127 Pt 21 شماره
صفحات -
تاریخ انتشار 2014